
ISSUES IN DEVELOPMENT

How Plastic Are Pericytes?

Alexander Birbrair,1–3 Isabella da Terra Borges,1 Isadora Fernandes Gilson Sena,1
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Pericytes are defined by both their anatomical location and molecular markers. Numerous publications have
reported their role as stem cells, contributing to the formation of tissues other than blood vessels. However,
using cell-lineage tracing in a new transgenic mouse model, a recent study shows that in the context of aging
and some pathologies, Tbx18+ pericytes do not function as stem cells in vivo. This study challenges the current
view that pericytes can differentiate into other cells and reopen questions about their plasticity. This emerg-
ing knowledge is important not only for our understanding of development but may also inform treatments
for diseases.
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In the late 1800 s, the French physiologist, Charles-Marie
Benjamin Rouget, described a population of contractile

cells in the capillaries, named Rouget cells after him [1].
German anatomist and histologist Karl Wilhelm Zimmermann
(1861–1935) renamed them pericytes due to their predomi-
nant location around blood vessels [2], and more than 100
years later, they were still identified mainly by location.

Now, approaches that consider anatomical location, the
expression of several molecular markers, and genetic line-
age are advancing our understanding of pericytes’ roles in
health and disease [3]. In addition to physically stabilizing
blood vessels, pericytes contribute to their normal archi-
tecture; vascular development, maturation, and remodeling;
and regulate permeability and blood flow [4–11]. They
collaborate with astrocytes to maintain the functional in-
tegrity of the blood–brain barrier [12–23], can affect blood
coagulation [24–26], and play a role in immune function by
regulating lymphocyte activation [27–30]. Evidence for
phagocytic properties has been reported [31–35].

In the last 10 years, numerous studies have established
pericytes’ potential to contribute to the formation of vari-
ous tissues; and the consensus holds that they have high
plasticity. However, in a 2017 article in Cell Stem Cell,
Guimarães-Camboa et al. challenge the current view of
endogenous pericytes as tissue-resident progenitors with the
capacity to differentiate into other cell types in vivo [36]. In
this study, we discuss these findings and evaluate recent

advances in our understanding of pericytes’ contribution to
tissue regeneration/homeostasis as tissue-resident progeni-
tors in vivo.

The Guimarães-Camboa group performed an exhaustive
analysis of cell fate tracing to study pericyte plasticity. First,
they generated a new mouse model (Tbx18H2B-GFP) that
can be used to label pericytes and smooth muscle cells in
several adult organs based on their expression of the tran-
scription factor Tbx18. Based on this knowledge, the group
created another mouse model in which the fate of Tbx18+
pericytes and Tbx18+ smooth muscle cells could be tracked
in vivo (Tbx18-CreERT2/tdTomato mice).

After following these animals for 2 years, they found that
Tbx18-derived cells maintain their mural identity in the
heart, muscle, fat, and brain, suggesting that perivascular
cells do not originate other cell types as these organs age. To
test whether their plasticity arises after tissue injury, the
authors fate traced Tbx18-derived cells after brain and
muscle damage. Surprisingly, under the tested conditions,
pericytes did not contribute to the formation of other cell
types. The study strongly suggested that, in vivo, pericytes
do not behave as stem cells.

According to the International Society for Cellular
Therapy (ISCT), adult stem cells were initially defined by
three criteria: (1) adherence to plastic [37]; (2) expression of
specific surface antigens; and (3) multipotent differentiation
potential in vitro [38]. These criteria are now unanimously
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considered too minimal since practically every nonclonal
culture of cells from any tissue could be classified as stem
cells under the right culture conditions [39]. Additionally,
the definition did not encompass a cell’s behavior in vivo.
These criteria will have to be restated.

Genetic fate-tracing mouse models are the most reliable
tools for assessing cell plasticity in vivo, but they are highly
dependent on the mouse model used. The inconsistencies
between the Guimarães-Camboa group study and previous
work may be due to the specificity of the transgenic mouse
models used to mark pericytes in vivo.

While the new data may have an important impact on the
field of pericyte biology, they also raise concerns. The au-
thors showed the in vitro capacity of Tbx18H2B-GFP+ cells
to differentiate into adipocytes, osteoblasts, and chondrocytes,
but they did not show whether Tbx18-CreERT2/tdTomato+
cells can do so as well. Future studies should address this
question, which would clarify whether inserting the Cre-
ERT2 cassette alters function in those cells, especially be-
cause Cre may be toxic under certain conditions [40].

Another open question is whether the pericytes labeled in
Tbx18-CreERT2/tdTomato mice show stem cell activity
in vivo under conditions not explored in this study. Other
studies using different genetic lineage-tracing models under
different conditions have shown that pericytes can form
several cell types; for instance, odontoblasts (in NG2creER/
Rosa26R mice) [41], scar-forming stromal cells (in Glast-
CreER/R26R-YFP mice) [42], and follicular dendritic cells
(in PDGFRb-Cre/Rosa26R mice) [43].

To determine whether pericytes form fibroblasts, Guimarães-
Camboa et al. used a transgenic mouse in which GFP is
expressed under the control of the type I collagen promoter
(Col1a1-GFP mice) [36,44] because there is no single
marker for all fibroblasts. They performed brain injury in
Tbx18-CreERT2/tdTomato/Col1a1-GFP mice and found
that pericytes do not form Col1a1-GFP+ fibroblasts [36].
Nevertheless, after injury, the number of cells producing type
I collagen was very small. Note that, along with fibronectin
and laminin, the major extracellular matrix molecule pro-
duced in the fibrotic scar after central nervous system (CNS)
lesion is type IV collagen [45–47], whereas very little type I
collagen is produced. Thus, future studies should analyze
which cells contribute to type IV collagen production after
CNS injury, rather than type I, which seems less relevant in
this type of scar. They might resolve the controversy with
another group, which found that, using Glast-CreER mice,
GLAST+ pericytes are the main source of fibrotic scar tissue
after CNS injury [42].

Several in vivo studies using lineage-tracing technolo-
gies have demonstrated that pericytes from several tissues
may contribute to fibroblast formation in other tissues in
some pathologies. For instance, Dulauroy et al. showed that
pericytes expressing ADAM12 during development give
rise to most of the collagen-producing cells during skeletal
muscle injury [48]. Mederacke et al. generated pericyte-
specific lecithin retinol acyltransferase Cre mice, which
marked nearly all liver pericytes, and confirmed that in models
of cholestatic, toxic, and fatty liver disease, pericytes are the

FIG. 1. Pericytes behave like
stem cells: true or false? Pericytes
are present around blood vessels in
several tissues, such as brain, heart,
lungs, skeletal muscle, bone mar-
row, and kidneys. Previous in vivo
studies demonstrated that, under
certain physiological and/or patho-
logical conditions, pericytes may
differentiate into other cell types:
adipocytes, cardiomyocytes, osteo-
blasts, skeletal muscle fibers,
fibroblasts, and others. Guimarães-
Camboa et al. now suggest that
pericytes do not behave as stem
cells [36]. Future studies using state-
of-the-art technologies, such as
new pericyte lineage-tracing mouse
models, may reveal the true po-
tential of pericytes in much greater
detail. Color images available on-
line at www.liebertpub.com/scd
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main collagen-producing cells [49]. Humphreys et al. found
evidence that pericytes give rise to fibroblasts during ex-
perimentally induced fibrosis in mice [50]. Given pericyte
heterogeneity within the same and between different tissues
[3,51–65], the exact contribution of pericytes to fibrosis may
vary by organ and pathophysiological condition [66].

Guimarães-Camboa et al. also performed a transaortic
constriction in Tbx18-CreERT2/tdTomato mice and found a
few examples of pericyte-derived ventricular cardiomyo-
cytes [36]. This result is not surprising as the rate of car-
diomyocyte regeneration in adult heart is very low [67,68].
The fact that they found labeled cardiomyocytes supports
another study that showed the capacity of pericytes to dif-
ferentiate into cardiac cells [69].

Although pericytes and vascular smooth muscle cells are
both mural cells, they occupy different locations in the
vasculature and are defined as two distinct cell types. Since
both are labeled in Tbx18-CreERT2/tdTomato mice, deter-
mining whether pericytes differentiate into smooth muscle
cells in this mouse model is impossible. In the heart, peri-
cytes are the second largest cell population [70], and a re-
cent study showed that during development, they generate
smooth muscle cells [71]. Whether they do so in the adult
heart remains unknown.

Interestingly, Guimarães-Camboa et al. did not test
whether pericytes from Tbx18CreERT2 mice could give rise
to osteoblasts, chondrocytes, or odontoblasts in vivo as other
studies have reported [36,41,72–74].

Future studies should resolve this controversy. Guimarães-
Camboa et al. showed that Pdgfrb-Cre transgenic mice are
unsuitable for specific lineage tracing of pericytes because
PDGFRb is expressed throughout the embryo during de-
velopment. Since its expression is more restricted in adult
animals, why did they not use PDGFRb-CreERT2 mice
instead [36,75]? Future work should compare the reported
results to results using PDGFRb-CreERT2, which should
mark pericytes in all tissues in Tbx18-CreERT2 mice.

The conclusion that vascular cells do not form adipocytes
is very startling; other recent studies in vivo using specific
vascular cell-lineage tracing have shown opposite results
[73,74,76]. Future studies should be designed to explain
these differences. When their vascular cells are labeled, why
can Myh11-CreERT2, NG2-CreER, Lepr-cre, and NG2-Cre
transgenic mice form fat-storing cells, whereas Tbx18CreERT2
mice cannot? As bone marrow pericytes are labeled in
Tbx18-CreERT2/tdTomato mice, future studies should ex-
pose them to sublethal irradiation, which induces fat for-
mation in the marrow.

Using Tbx18CreERT2 mice, the authors also conclude
that resident pericytes do not form skeletal muscle fibers.
However, under the same experimental conditions, but using
other mice, several groups came to different conclusions
about the in vivo myogenic capacity of skeletal muscle
pericytes. Using Alkaline Phosphatase-CreERT2 transgenic
mice, Dellavalle et al. demonstrated that pericytes residing
in postnatal skeletal muscle differentiate into skeletal mus-
cle fibers and, furthermore, generate satellite cells, the
skeletal muscle-specific progenitors [77]. Using NG2-Cre
mice, Kostallari et al. demonstrated that pericytes can form
myofibers and are indispensable for postnatal skeletal
muscle growth. Using a transgenic mouse model for selec-
tive diphtheria toxin-induced depletion of NG2+ pericytes,

they found that pericyte ablation led to myofiber hypo-
trophy. This report was the first to show that skeletal mus-
cle formation in vivo depends on myogenic cells other
than satellite cells [78]. Future studies should test whether
Tbx18+ pericyte depletion in Tbx18-CreERT2/iDTR mice
affects the regenerative potential of the skeletal muscle and
other organs.

Several studies of pericyte biology focused on develop-
mental events and times when the basement membrane
around blood vessels is not fully developed, when pericytes
may be more exposed to differentiation cues from their
surroundings. Might pericytes exhibit stem cell behavior
only when they are removed from their niche and exposed to
artificial conditions? Future studies should explore the pericyte
response in Tbx18CreERT2 mice at different developmental
stages and in tissues like bone marrow, where periendothelial
cells are not embedded in a basement membrane.

Note that pericytes from the kidneys, liver, lungs,
gastrointestinal tract, and pancreas were not labeled in
Tbx18H2B-GFP mice. Why? Given their heterogeneity, do
pericytes in these different tissues share specific cap-
abilities? Liver pericytes have been shown to form other
cells in vivo using lineage fate tracing specific to hepatic
pericytes [49]. What are their origins? Do they develop from
a different source than pericytes that express Tbx18? For
instance, during development, the origins of pericytes from
the liver, lung, and gut have been mapped to the meso-
thelium [79–81]. In sharp contrast, lineage-tracing studies
indicate that forebrain pericytes have a neuroectodermal
origin [82]; whereas endothelial cells give rise to cardiac
pericytes in the murine embryonic heart [83].

Interestingly, Xu et al. showed the importance of Tbx18
in the normal development of the vasculature in mammalian
kidneys, when it is expressed by pericytes. Moreover, they
observed a reduction of the number of pericytes around
blood vessels in Tbx18-/- mice [84]. Future studies will
address when renal pericytes stop expressing Tbx18.

Not all perivascular cells are pericytes, and the expression
of Tbx18 in other perivascular cells (i.e., adventitial peri-
vascular cells [85], perivascular fibroblasts [86], perivas-
cular macrophages [87,88]), has not been investigated.
Furthermore, vascular smooth muscle cells are also labeled
using Tbx18CreERT2/TdTomato mice, perhaps obscuring
rare events, such as differentiation to other cell lineages.
Flow-cytometric characterization of freshly dissociated cells
using this and other genetic lineage-tracing models will
provide an accurate quantification of cell fates.

Finally, pericytes have been shown to be heterogeneous
even within the same tissue as demonstrated in skin, spi-
nal cord, brain, skeletal muscle, heart, kidney, lung, and
bone marrow [42,66,89–94]. According to Guimarães-
Camboa et al., *10% of pericytes were not labeled in the
Tbx18CreERT2/TdTomato model, which suggests that a
subpopulation of pericytes were not analyzed in their study.
Does a rare population of Tbx18-PDGFRb- pericytes exist,
and can they behave as stem cells? In addition to genetic cell
fate mapping, transcriptomic and single-cell analysis rep-
resent fundamental tools that will help us to understand the
roles of pericytes within the same tissue.

In conclusion, Guimarães-Camboa et al. provide a new
and important insight into pericyte biology: pericyte plas-
ticity is limited, and they do not behave as stem cells under
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certain conditions [36]. This new concept challenges sev-
eral studies, not only in vitro, but also in vivo, with other
lineage-tracing transgenic mice (Fig. 1). The potential for
unraveling whether and how pericytes form other cell types
in normal and diseased physiology is limited only by the
precision of the distinct Cre alleles that are available. Are
pericytes unable to behave like stem cells only in the Tbx18-
CreERT2 mouse model? In the coming years, studies de-
fining whether pericytes can act as stem cells and under
what conditions may spark new approaches to several
pathological conditions. Present in all tissues, pericytes may
play important roles in tissue turnover and regeneration.
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